CARDIOVASCULAR FITNESS MACHINE

een /huend/ma

DESP:2000 CAD for Products Designers 2:

Project 2 2019/20

Digital-Prototype-Modelling of a cardio-vascular fitness-machine

potential user /brand/market context						
Lifestyle Personal Fitness – Preventative-Healthcare Technology			TUTOR DIRECTED STUDY			
Post-Trauma Rehabilitation – Healthcare Technology				1.5 h	rs per week	
School Digital Laboratory – <i>Learning Technology</i>			Lecture Series 1hr per week	Digital Prototyping Process Phases	Recorded Tutorials + Published PDF tutorials	SELF-DIRECTED STUDY 8.5 hrs per week
	Virtual Prototype	Week 15 11/01/2021	PROJECT WEEK 1 Project Process Overview Digital Prototyping of Functional Performance Solidworks Analytical Tools Video Based proposal Narratives	SW Motion Study Linkage + Structure Modelling	Modelling 'structural-rig' of the existing product configuration Prepare a base animation of the movement limits	GENERATE SKETCHBOOK PRO SCALED RENDERED ELEVATIONS Based on the existing product configuration generate concepts visuals of re-designed product brand form Use a generic brand as direct reference Nike / Gym Shark / Oakley/ Speedo
	Nodelling Processes	Week 16 18/01/2021	PROJECT WEEK 2 Application of Digital Analytical Tools in Product Development	Solidworks Framework Form Modelling	Modelling a brand re-design of the 'structural-rig' of the existing product configuration	UNDERTAKE MODELLING OF STRUCTURAL ELEMENTS AND PRIMARY MOTION FUNCTIONS – movement scope and range Apply re-brand-design culture from inserted Sketchbook Pro- renders
		Week 17 25/01/2021	PROJECT WEEK 3 Iterative Digital Modelling in optimising functional performance	Solidworks FEA	Modelling a test of the load- structural capacity and balance of the lift function	UNDERTAKE MODELLING OF GEAR TRAIN – consider assembly issues, usability and manufacturability
BLADE 2.0		Week 18 01/02/2021	PROJECT WEEK 4 Gearing Principles, Types and SW gear mate feature	Solidworks Gear-mate	Modelling a gearing assembly and animating gearing advantage	COMPLETE A SCHEMATIC MODE OF THE GEAR-TRAIN – undertake a motion study to demonstrate performance parameters
<image/>	Product Proposal PORTFOLIO PUBLICATIONS	Week 19 08/02/2021	PROJECT WEEK 5 Detailing of engineered mechanisms as SW models	Modelling Sub-Assemblies	Modelling bearing subassemblies of a handle -drive acting on a gearing mechanism	COMMENCE RESOLUTION OF THE DIGITAL PROTOTYPE Resolve finalisation of Master File details, part-files sand sub-assembly files. ARCHIVE FILES
		Week 20 15/02/2021	PROJECT WEEK 6 BS888 standards and the contemporary alternative – Model Based Definition	BS:8888 overview Review on GA's + Part Files + Sectional Details Dimensions	Review case study of tech drawings submission – Strategy for Layout of GA, Component, Sub- Assemblies	DEVELOP GENERAL ASSEMBLY MODEL - Based on part files + sub-assemblies, plus the Masterfile. ARCHIVE FILES
		Week 21 22/02/2021	PROJECT WEEK 7 BS:8888 Tolerances + Tolerancing Strategies	BS:8888 Tolerances + Tolerancing Strategies for general assembly, sub-assembly and single part	Case Study Exercises Dimensioning of drawings and applying Tolerancing of Geometry, Dimensions and assembly fits	GENERATION OF MBD REFERENCES Dimensioned and annotated ASSEMBLY 3D PDF PARTS 3DPDFS DIMENSIONING AND SCHEDULE OF TOLERANCES on geometry, dimensions and fits
		Week 22	EMPLOYABILITY WEEK		PROGRAMMED ACT	TIVITIES
		Week 23 08/03/2021	PROJECT WEEK 8 Compiling Proposal Technical Drawings + Specification Notation	SW Visualise scripted animations	Generating scripted animations of product functions + performances	PARAMETRIC MODELLING PROCESS PDF 20 X A3 PAGES Portfolio Publication
		Week 24 15/03/2021	PROJECT WEEK 9 Compiling Product Proposal Video Narratives	Adobe Premier Compositing multiple-aspect video presentations	Compile video narratives of product form, interactions and performative functions	SCRIPTED ANIMATION PROPOSAL FUNCTION Generating scripted animation of your proposal product function + performance
51cm 166cm		Week 25 22/03/2021	PROJECT WEEK 10 PREVIOUSLY RECORDED Bonus Lecture SW - Topology Optimisation	Technical Drawings Submissio uploaded 09:00am 16/03/20 Technical Drawings Presenta Groups C & D	on 20 tions – see tutorial slots	PORTFOLIO PUBLICATIONS PUBLISHING Compile video narrative of product form, interactions and performative functions – use animations, stills, apply timed-annotation

DESP:2000 PROJECT 2 weeks 15-25 total study hours 100 hours – approximately MODULE WEIGHTING – 50%

CARDIOVASCULAR FITNESS MACHINE PARAMETRIC VIRTUAL PROTOTYPE + PRESENTATION

This project will further the principle techniques, methodologies and process established in Project 1 A + B. The complexity of mechanical functional and movement are integral to the product form which will be virtually prototyped. The range of digital evaluations will involve mechanical efficiency, fatigue testing and an in-depth LCA study

The Virtual prototype will be developed so has to have 3 different configurations (design versions) using varying materials, forms + functions, technical specifications and brand identities

This project will serve a key preparation of your virtual prototyping practices in readiness for Graduate Year Design Practice and or Placement / Internship design practice

In addition, the project will further develop the range of formats and channels for presenting and communicating both virtual prototypes and also your CAD practices. A range of presentational contexts will be considered across range audience types – self, design team, client, potential employers. Time based media will constitute the larger part of this project activity

PROJECT 2 PART A 40% Project Weighting

Shall focus on the form + feature generation offered parametric modelling software in developing mechanical functionality and motion study visualisation + analysis

This will include developing a methodical and logical management of a

1/ parametric data set (feature tree manager)

2/ preparation and organisation of a *parametric data file set* connected parametric file set which will include three principle features

- master model
- part models
- assembly model
- Digital evaluation of parametric virtual prototypes

3/capability to affect adaptive design corrections additions and retractions based on this same *parametric data file set*

4/ version control over 3 sets of design requirements

PROJECT 2 PART B 60% Project Weighting

The aim is to further develop the practises of parametric modelling that not only generates form + features, but also establishes a parametric data set that facilitates and enables a wide range of types

and forms of design editing including refinements corrections and amendments – the focus of the variability will be on the 3 configurations

Part B will focus on design presentation which principle emphases being on visualising, presenting and evaluating the motion aspect of the product function + performance.

This will follow on to the overall communication and presentation of design proposal, whereby the parametric virtual prototype is the basis for generating visual images, time-based narratives and technical drawings. These will be generated, composed and published with intent of adding to a personal portfolio of CAD practices.

Ultimately this will progress onto a communicating the professional level of CAD practises, collated in the form of a focused proposal presentation and more generally as a CAD practice portfolio

in addition to the expected visual communication of motion, mechanical function, form images technical specification, you will also be preparing a recorded voice over of the above-mentioned proposal presentation

This is to further facilitate your ability to communicate on the level of a design team, client context and to the wider design industry community

SUMMARY SUBMISSION REQUIREMENTS

PROJECT 1

PART A – 40% project weighting

Effectiveness of Parametric Modelling Process Development of mechanical functions Application of FEA Digital Evaluation Tools Generation of Digital Motion Study

PART B – 60% project weighting

Log of Parametric Modelling Process Master / Part / Sub-Assembly/ Assembly Models Visualisation of Function Motion Study + Recorded Animation Application of FEA / LCA / Costing Digital Evaluation Tools Presentation of Technical Specification Drawings - MBD

SUMMARY SUBMISSION DEADLINE

WEEK 25 MONDAY 21:00 HRS 22nd March 2021 BLACKBOARD UPLOAD + FILE SHARING PORTAL

DESP:2000 - CAD for Product Design II - 2020/21

Project 2 – Summative Assessment FB Sheet

Product Proposal

VIRTUAL PROTOTYPE EVALUATION + PROPOSAL SPECIFICATION

CARDIOVASCULAR FITNESS MACHINE

Assessor Check	Student Check	ST:	DELIVERABLES CHECKLIST:										
		sion	Set of Manufacturing Specification BS:8888 Drawings / Tolerancing schedule / MBD version										
		and odel	Parametric Model Sequence – master Model, Part Models, Sub-Assembly model and Assembly Model										
		ions	Animation of Product Functions										
		ysis	Proposals Functional Analysis + Life Cycle Analysis										
		tion	Proposals Functional Analysis + Life Cycle Analysis Proposal Consumer Value Differential + Consumer Usability Visualisation										
CE E	D	D	D+	C-	C	C	P _	D	D.L	Δ	Δ	۸ı	A++

78 - 100	79-77	A 76-73	A- 72-70	69-67	Б 66-63	D- 62-60	59-57	56-53	52-50	49-47	46-4	13	42-40	39-30	1 29-0
	STUDENT NAME:														
module MARKING CRITERIA:								projec elemer weightii	t nt ng	module LO's		attai m	attainment marks		
				Effectiveness of Parametric Modelling Process 10%											
Pa	rametric	Virtual		Development of mechanical functions							10%		1,2,3,		
Pro	Prototyping Process 40%			Ар	Tools	10%		4,5,6,7							
					tudy	10%									
	Dropos		Log of Parametric Modelling Strategy Master / Part / Sub-Assembly/ Assembly Models												
	Specifica	tion		Visualisation of Function Motion Study + Recorded Animation								:	1,2,3,		
	Presenta + Animat	tion tion			sting Tools	10%		4	,5,6,7						
60%				25%											
Ма	odule Wei 50%	ighting	l ('Ma	Mark descriptors are the University's marking framework for assessment. Based on generic criteria, they cover a broad range of disciplines. Use of the descriptors is supported by full guidance can be found in your Subject & Programme Guide ('Marking Criteria). The generic mark descriptors form part of the University's regulations							& tions	P (roject Grade		
Asse	essor					Mode	erator				-				

PROJECT SUBMISSION DEADLINE Monday 19:00 22nd March 2021

CARDIOVASCULAR FITNESS MACHINE

potential user /brand/market context

- Lifestyle Personal Fitness Preventative-Healthcare Technology
- Post-Trauma Rehabilitation Healthcare Technology
 School Digital Laboratory Learning Technology

DESP:2000 CAD for Products Designers 2:

Project 2 2019/20

Digital-Prototype-Modelling of a cardio-vascular fitness-machine

ntative-Healthcare Technology							
althcare Technology			1.5 h	rs per week	1		
ing Technology	Study Weeks	Lecture Series 1hr per week	Digital Prototyping Process Phases	Recorded Tutorials + Published PDF tutorials	SELF-DIRECTED STUDY 8.5 hrs per week]	
Virtual Prototype	Week 15 11/01/2021	PROJECT WEEK 1 Project Process Overview Digital Prototyping of Functional Performance Solidworks Analytical Tools Video Based proposal Narratives	SW Motion Study Linkage + Structure Modelling	Modelling 'structural-rig' of the existing product configuration Prepare a base animation of the movement limits	GENERATE SKETCHBOOK PRO SCALED RENDERED ELEVATIONS Based on the existing product configuration generate concepts visuals of re-designed product brand form Use a generic brand as direct reference Nike / Gym Shark / Oakley/ Speedo		
Processes	Week 16 18/01/2021	PROJECT WEEK 2 Application of Digital Analytical Tools in Product Development	Solidworks Framework Form Modelling	Modelling a brand re-design of the 'structural-rig' of the existing product configuration	UNDERTAKE MODELLING OF STRUCTURAL ELEMENTS AND PRIMARY MOTION FUNCTIONS – movement scope and range Apply re-brand-design culture from inserted Sketchbook Pro- renders		
	Week 17 25/01/2021	PROJECT WEEK 3 Iterative Digital Modelling in optimising functional performance	Solidworks FEA	Modelling a test of the load- structural capacity and balance of the lift function	UNDERTAKE MODELLING OF GEAR TRAIN – consider assembly issues, usability and manufacturability		
	Week 18 01/02/2021	PROJECT WEEK 4 Gearing Principles, Types and SW gear mate feature	Solidworks Gear-mate	Modelling a gearing assembly and animating gearing advantage	COMPLETE A SCHEMATIC MODE OF THE GEAR-TRAIN – undertake a motion study to demonstrate performance parameters		
	Week 19 08/02/2021	PROJECT WEEK 5 Detailing of engineered mechanisms as SW models	Modelling Sub-Assemblies	Modelling bearing subassemblies of a handle -drive acting on a gearing mechanism	COMMENCE RESOLUTION OF THE DIGITAL PROTOTYPE Resolve finalisation of Master File details, part-files sand sub-assembly files. ARCHIVE FILES		\setminus
Product Proposal	Week 20 15/02/2021	PROJECT WEEK 6 BS888 standards and the contemporary alternative – Model Based Definition	BS:8888 overview Review on GA's + Part Files + Sectional Details Dimensions	Review case study of tech drawings submission – Strategy for Layout of GA, Component, Sub- Assemblies	DEVELOP GENERAL ASSEMBLY MODEL - Based on part files + sub-assemblies, plus the Masterfile. ARCHIVE FILES		
PORTFOLIO PUBLICATIONS	Week 21 22/02/2021	PROJECT WEEK 7 BS:8888 Tolerances + Tolerancing Strategies	BS:8888 Tolerances + Tolerancing Strategies for general assembly, sub-assembly and single part components	Case Study Exercises Dimensioning of drawings and applying Tolerancing of Geometry, Dimensions and assembly fits	GENERATION OF MBD REFERENCES Dimensioned and annotated ASSEMBLY 3D PDF PARTS 3DPDFS DIMENSIONING AND SCHEDULE OF TOLERANCES on geometry, dimensions and fits across all drawing sheets		
	Week 22 01/03/2021	EMPLOYABILITY WEEK		PROGRAMMED AC	TIVITIES		
	Week 23 08/03/2021	PROJECT WEEK 8 Compiling Proposal Technical Drawings + Specification Notation	SW Visualise scripted animations	Generating scripted animations of product functions + performances	PARAMETRIC MODELLING PROCESS PDF 20 X A3 PAGES Portfolio Publication		
	Week 24 15/03/2021	PROJECT WEEK 9 Compiling Product Proposal Video Narratives	Adobe Premier Compositing multiple-aspect video presentations	Compile video narratives of product form, interactions and performative functions	SCRIPTED ANIMATION PROPOSAL FUNCTION Generating scripted animation of your proposal product function + performance		
	Week 25 22/03/2021	PROJECT WEEK 10 PREVIOUSLY RECORDED Bonus Lecture SW - Topology Optimisation	Technical Drawings Submission uploaded 09:00am 16/03/202 Technical Drawings Presental Groups C & D	on 20 cions – see tutorial slots	PORTFOLIO PUBLICATIONS PUBLISHING Compile video narrative of product form, interactions and performative functions – use animations, stills, apply timed-annotation		

DESP:2000 PROJECT 1 - PARTS A + B submission

MONDAY - 21:00hrs 22nd MARCH 2021

DESP:2000 PROJECT 2 weeks 15-25 total study hours 100 hours - approximately

MODULE WEIGHTING – 50%

CARDIOVASCULAR FITNESS MACHINE PARAMETRIC VIRTUAL PROTOTYPE + PRESENTATION

This project will further the principle techniques, methodologies and process established in Project 1 A + B. The complexity of mechanical functional and movement are integral to the product form which will be virtually prototyped. The range of digital evaluations will involve mechanical efficiency, fatigue testing and an in-depth LCA study

The Virtual prototype will be developed so has to have 3 different configurations (design versions) using varying materials, forms + functions, technical specifications and brand identities

This project will serve a key preparation of your virtual prototyping practices in readiness for Graduate Year Design Practice and or Placement / Internship design practice

In addition, the project will further develop the range of formats and channels for presenting and communicating both virtual prototypes and also your CAD practices. A range of presentational contexts will be considered across range audience types – self, design team, client, potential employers. Time based media will constitute the larger part of this project activity

PROJECT 2 PART A 40% Project Weighting

Shall focus on the form + feature generation offered parametric modelling software in developing mechanical functionality and motion study visualisation + analysis

This will include developing a methodical and logical management of a

1/ parametric data set (feature tree manager)

2/ preparation and organisation of a parametric data file set connected parametric file set which will include three principle features

- master model
- part models
- assembly model
- Digital evaluation of parametric virtual prototypes

and forms of design editing including refinements corrections and amendments – the focus of the variability will be on the 3 configurations

Part B will focus on design presentation which principle emphases being on visualising, presenting and evaluating the motion aspect of the product function + performance.

This will follow on to the overall communication and presentation of design proposal, whereby the parametric virtual prototype is the basis for generating visual images, time-based narratives and technical drawings. These will be generated, composed and published with intent of adding to a personal portfolio of CAD practices.

Ultimately this will progress onto a communicating the professional level of CAD practises, collated in the form of a focused proposal presentation and more generally as a CAD practice portfolio

in addition to the expected visual communication of motion, mechanical function, form images technical specification, you will also be preparing a recorded voice over of the above-mentioned proposal presentation

This is to further facilitate your ability to communicate on the level of a design team, client context and to the wider design industry community

SUMMARY SUBMISSION REQUIREMENTS

PROJECT 1

PART A – 40% project weighting

Effectiveness of Parametric Modelling Process

Development of mechanical functions

Application of FEA Digital Evaluation Tools

Generation of Digital Motion Study

PART B – 60% project weighting

Log of Parametric Modelling Process Master / Part / Sub-Assembly/ Assembly Models Visualisation of Function Motion Study + Recorded Animation Application of FEA / LCA / Costing Digital Evaluation Tools

Presentation of Technical Specification Drawings - MBD

SUMMARY SUBMISSION DEADLINE

WEEK 25

MONDAY 21:00 HRS 22nd March 2021 BLACKBOARD UPLOAD + FILE SHARING PORTAL

PROJECT SUBMISSION DEADLINE Monday 19:00 22nd March 2021

Moderator

Generation of Digital Motion Study

/isualisation of Function Motion Study

+ Recorded Animation

on of FEA / LCA / Costing Digital Evaluation Tools

ion Drawings MBD

s are the University's marining framework you assessment. eneric criteria, they cover a broad range of disciplines. I's is supported by Uili guidance and be found in your Subject & Programme Guide Grade

Programme Guiae mark descriptors form part of the University's regulations

Log of Parametric Modelling Strategy Master / Part / Sub-Assembly/ Assembly Models

Proposal Specification

Log Presentation + Animation 60%

Module Weighting 50%

Assessor

 $-\bigcirc$

10%

25%

DESP:2000 PROJECT 1

'Marking Criteria). The gener

PARTS A + B submission

MONDAY - 21:00hrs 22nd MARCH 2021

project deliverables

PROJECT 2 PART A completion - week 19

GENERATION OF MODELLED 'PROPOSAL' - MASTER MODEL SW MODEL

GENERATION OF MODELLED 'GEAR-TRAIN' MECHANISM SW MODEL

GENERATION OF MODELLED 'FEA' STUDIES SW MODEL

GENERATION OF MODELLED 'MOTION' STUDIES SW MODEL

PROJECT 2 PART B

PARAMETRIC FILE SET MASTER - PARTS - ASSEMBLY PDF PORTFOLIO PUBICATION-01 20 X A3 PAGES + SW FILE SET

PROPSOAL MOTION FUNCTION VIDEO PORTFOLIO PUBLICATION-02 2 MINUTE VIDEO PRESENTATION

DIGITAL ANALYSIS VOP VIDEO PORTFOLIO PUBLICATION-03 10 SLIDES 2 MINUTES

TECHNICAL SPECIFICATION - MBD 3D PDF - PORTFOLIO PUBLICATION-04 COLLATION OF MULTIPLE 3D PDFS - ASSEMBLY + PARTS